
 

 
 

 
 
 
 
 

Interface Manual 
 
Documentation for interfacing with the digital console of the Sauer and Utopa organs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Version #4 
Wouter Snoei 2023 
 
 



Interface Manual / Index 
 

 2 

  



Interface Manual / Index 
 

 3 

Index 
 
Index ......................................................................................................................................... 3 
1 About this manual .................................................................................................................. 4 
2.1 Tools of choice .................................................................................................................... 4 
2.2 What is MIDI ....................................................................................................................... 5 
2.3 What is OSC ......................................................................................................................... 5 
3 How to control the organ ....................................................................................................... 8 

MIDI ...................................................................................................................................... 8 
OSC ........................................................................................................................................ 9 
Mixed .................................................................................................................................. 10 

4.1 Setting up and using MIDI ................................................................................................. 11 
4.2 Setting up OSC .................................................................................................................. 11 
4.3 Using OSC with Ableton Live / Max4Live device ............................................................... 12 
4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application .......................................... 13 

4.4.1 Playing notes .............................................................................................................. 14 
4.4.2 Chord memory system ............................................................................................... 16 
4.4.3 Controlling registers ................................................................................................... 17 
4.4.4 Register presets ......................................................................................................... 18 
4.4.5 Controlling settings .................................................................................................... 19 

4.5 Using OSC with other software ......................................................................................... 20 
5 OSC implementation ............................................................................................................ 23 

5.1 Notes ............................................................................................................................. 23 
5.2 Registers Utopa ............................................................................................................. 24 
5.3 Registers Sauer .............................................................................................................. 25 
5.4 Divisions Sauer .............................................................................................................. 26 
5.5 Layer settings ................................................................................................................ 27 
5.6 Utopa Tremolo .............................................................................................................. 29 
5.7 Swell pedals .................................................................................................................. 30 
5.8 Setzer ............................................................................................................................ 30 
5.9 Single commands .......................................................................................................... 31 

6 Console MIDI implementation ............................................................................................. 32 
6.1 Notes ............................................................................................................................. 32 
6.2 Swell pedals .................................................................................................................. 32 
6.3 Setzer ............................................................................................................................ 32 
6.4 "The rest" ...................................................................................................................... 33 

7 List of registers and ranges .................................................................................................. 35 
 
  



Interface Manual / 1 About this manual 
 

 4 

1 About this manual 
 
This document will give directions on how to control the Utopa and Sauer at the Orgelpark 
via MIDI and OSC, to be able to play the instruments via computers and external (MIDI) 
controllers. The manual assumes general knowledge about the instruments themselves and 
the digital console. Distributed with this manual are files with data, graphs, patches, plugins 
and code examples for various platforms. Altogether I hope to give you, the reader, as many 
tools and information as I can for you to be able to get creative and control these 
magnificent instruments in ways no-one ever imagined before. Or simply to make music with 
them. 
 
As the console itself is basically a computer, and the organ is always in development, things 
explained in this manual may at some point be caught up by reality, as new functions, 
improvements and changes may be applied to the instruments. I will try to keep the manual 
up-to-date, so therefore it is wise to check if you have the latest version of it. 
 

2.1 Tools of choice 
 
The digital organ console, as created by the kind people of Sinua and Engelbertse 
Orgelbouwers, was fitted with a MIDI interface, and an OSC network protocol. Both these 
interfaces can be used to control the organ, and each has their pros and cons. As a user and 
software engineer I would say the OSC protocol is most fitted to control all aspects of the 
instruments. Of course, MIDI is a more widely accepted and supported protocol, but 
unfortunately it is as a system not flexible enough to be able to support all the functionality 
of the instruments in this case. Basic functions such as playing notes on the manuals and 
pedals, and switching between settings on the console’s Setzer can be done via MIDI, but as 
soon as we get to setting registers or changing layer properties it becomes harder if not 
impossible to do via MIDI. This is where OSC comes in, allowing full and direct control on all 
parameters, and even allowing the user to play notes in individual layers instead of whole 
manuals. It could happen, in some cases that both MIDI and OSC are used alongside each 
other. The choice of protocol also depends on the software that you intend to use. Here 
follows a list of known (and less known) software packages that should be able to control 
the organ via MIDI and/or OSC: 
 

Software MIDI OSC 
Ableton Live Yes Yes *) 
Logic Pro Yes Via Max patch **) 
Sibelius Yes Via Max patch **) 
Other DAW/Notation software Yes Via Max patch **) 
Max Yes Yes 
SuperCollider Yes Yes 
OpenMusic Yes Yes ***) 
Cabbage / Csound Yes Yes 
Qlab Yes Yes 
JavaScript, Python etc.: Yes Yes 



Interface Manual / 2.2 What is MIDI 
 

 5 

 
 
*) using the M4L instrument supplied with this manual 
**) using the MIDI to OSC conversion Max patch / application supplied with this manual 
***) untested 
 
There are various iPad/iPhone/tablet apps on the market supporting OSC. However, the OSC 
protocol created for and used by the organ console is not easily created by any of these apps 
so far. For example, it should be possible to use TouchOSC (mk2) but it would require some 
work to create a working patch to control the organ. 
 

2.2 What is MIDI 
 
MIDI is short for Musical Instruments Digital Interface. It was invented in the 1980-ties as a 
means for combining multiple synthesizers, and later on became more popular applied in 
sequencers and music software as a way to control those hardware synthesizers. In the 
current situation MIDI is usually used the other way around; as a way to control computer 
software via hardware controllers. The MIDI protocol is quite simple in terms of computer 
science. It uses only 8-bit values at a fixed speed. Where it falls short is in the resolution of 
values and address space. The address space is also very much inspired on the architecture 
of keyboard-driven synthesizers, which is a limitation in the current field where much more 
complex and different kinds of instruments exist. Speed is also an issue; as soon as messages 
start becoming more complex (such as in System Exclusive messages or large chords) there 
can be perceivable delays. The main pro for using MIDI is in that same simplicity, which 
makes it a very reliable system. Basically, unless the cable is broken, MIDI always just works 
as soon as it is connected. 
 
“Classic” MIDI comes in the form of a 3-pole cable with a DIN plug, connected to a dedicated 
MIDI interface. The information only travels one-way, so if back-and-forth connection is 
required two cables are needed. Many hardware MIDI controllers however have a built-in 
MIDI interface and connect directly via a single USB cable to a computer. There are also 
various network MIDI protocols, which allow MIDI information to travel over a standard 
(possibly WIFI) computer network. The MIDI connection of the digital console at Orgelpark 
uses the classic DIN MIDI connection, so in order to connect it to a computer a separate 
MIDI interface device is required. There is one available at the Orgelpark. More about MIDI 
can be found at http://www.midi.org/.  
 

2.3 What is OSC 
 
In recent years a reasonably stable standard for music communication came to be, named 
Open Sound Control. OSC is a network protocol with a standardized way of combining 
addresses, parameter names and values. The aim of the system is the same as with MIDI; 
communication between electronic music software and hardware. The approach is different 
in the sense that there is much more freedom in the way messages are composed. Messages 
in OSC usually include text, can have multiple values and can be almost any size. The only 

http://www.midi.org/


Interface Manual / 2.3 What is OSC 
 

 6 

thing OSC defines is the way these messages are technically transported between sources 
and receivers, and what data types they can be in. These types are: String (text), 32-bits 
Integers (whole numbers), 32-bits Floating Point numbers (fractional numbers with decimal 
point) and so-called “data-blobs” containing arbitrary sized amounts of data. Also specified 
in the OSC format are time tags, pointing to a specific moment in time where a received 
message should be evaluated, but not so many existing OSC-enabled applications are able to 
use those (they are also a bit inconvenient when using between multiple computers as they 
need to have their clocks precisely aligned for it to work). 
 
While the data-types that can be sent are defined by the OSC standard, the exact 
composition of text and values to send and receive is up to individual manufacturers and 
software builders. This usually depends on what is to be controlled. By convention, 
messages tend to start with a text part in the style of a typical URL address, with forward 
slashes (“/”) in between words (similar to web addresses), stating which specific parameter 
or function the message should apply to. Then this is followed by one or more numbers 
(float / integer) or separate words, also depending on the type of parameter. A message for 
setting for example the frequency of an oscillator to 440Hz could look like this: 
 
[ “/oscillator/freq”, 440 ] 
 
But it could also look like this: 
 
[ “/oscfreq”, “440Hz” ] 
 
Or whatever the builder of the oscillator in question decided it should be. This means that to 
be able to control something via OSC one must first know what the messages for that 
specific instrument or device should look like. What exact words are to be used, and what 
types of values can be sent with them. Therefore, a set of OSC messages that works for one 
specific device or program, doesn’t necessarily work for another. Sinua, the builders of the 
Utopa/Sauer organ console, designed an OSC language to fit the specific needs and 
capabilities of this instrument. This manual will provide you with all the details of it in 
section 5 OSC implementation. 
 
In the freedom and slightly anarchistic quality of the OSC protocol lies also the reason for the 
creators of the Orgelpark organ console to use it. Where MIDI falls short in simply not having 
enough types of messages to control all features of the organs, OSC can have a nearly 
unlimited amount of individual message types. Also, because messages can be of any size, it 
creates the possibility to make whole chords or clusters, or for example set all registers at 
once, with a single message. The OSC language that Sinua invented for this instrument is 
very flexible and at the same time quite simple and straight-forward to learn. 
 
The connection required for OSC is only a network cable. If multiple computers are to be 
connected to the organ, an ethernet switch is required. The Orgelpark has a number of these 
available. 
 
The OSC messages can also go over WiFi, but in the case of the Orgelpark you would need to 
bring your own WiFi router for that. Please note that WiFi is generally a less reliable way of 



Interface Manual / 2.3 What is OSC 
 

 7 

transporting OSC messages for the Orgelpark organ, as there is a chance of drop-outs, 
causing either missed or stuck notes, especially if many notes are played at the same time.  
 
As OSC is a network protocol it shares the same pros and cons with other network-based 
solutions, in particular one we all know quite well; the internet. The speed of the OSC 
connection depends entirely on the network speed itself, and can be influenced by other 
programs and/or computers using the network. There is no guaranteed speed for a message 
to travel between sender and receiver, although in the case of a wired network with little 
traffic there shouldn’t be any perceivable latency or difference in timing. Things get different 
at high traffic, and this traffic can also be caused by sending many OSC messages at the same 
time. At a certain point the network traffic will stall and you will get the typical stuttering 
that also happens with YouTube clips playing on slow WiFi. Also, there is no 100% guarantee 
that all your messages will arrive at the receiver. As said, these problems only occur in 
situations where there is much network traffic. It is usually advised to do OSC 
communication on a network that isn’t connected to the internet, to make sure the only 
thing that travels through the network cables is actual OSC messages. And, if you intend to 
do really fast things or a send a lot of messages, beware of the fact that some may arrive 
later or not at all, and that timing in such cases may become less tight. That said, the speed 
of OSC messages in the case of the system at the Orgelpark exceeds that of MIDI by a large 
factor.  
 
When dealing with OSC software, the user sometimes gets a choice between UDP and TCP 
modes. This is a technical detail, OSC can operate in both modes but the implementation of 
the Orgelpark console only supports UDP. Also, some OSC hosts support “bundled 
messages” and time stamps, but these are also not supported by the Orgelpark organ. 
 
More info about OSC can be found at: http://opensoundcontrol.org/.  

http://opensoundcontrol.org/


Interface Manual / 3 How to control the organ 
 

 8 

3 How to control the organ 
 
To be able to play or control the organ via an external device or computer, first a choice 
needs to be made between OSC and MIDI. As explained above, it depends a bit on the 
software you are (comfortably) using, but also on your goal (which may actually influence 
your choice of software as well). The way things are at the current situation is as follows:  
 
 
MIDI 
 
The MIDI implementation of the organ is there somewhat by coincidence. The console itself, 
including the manuals, pedals and all the buttons and knobs, is in fact a large MIDI 
controller. Knowing what that device sends to the system is the same as knowing the MIDI 
implementation. So theoretically, everything you can do by hand with the console, can be 
done also via MIDI. But, it has to be done really in the same way. For playing the keyboards 
(manuals and pedals) this is no problem, as sending MIDI notes on the correct channels (1 to 
4) will have the same effect as playing them by hand. If this is all you need, then MIDI can be 
the way to go. Section 6 Console MIDI implementation describes how this is done. 
 
If you want to do anything with registers however, things get more complex. Each of the 
register switches has its own MIDI note (a full list of the exact notes and messages to be sent 
for each switch can be found elsewhere in this manual). In case of the Sauer registers this is 
quite straightforward, as they are not dependent on the layer you are in. But in case of the 
(black) Utopa registers it is an issue, as the state of these switches changes depending on 
which layer is selected on the touch screen. Unfortunately, there is no way for an external 
computer or device of knowing which layer is currently selected, so flipping the switch via 
MIDI doesn’t have a predictable effect; it may set that register in some layer, or do nothing 
at all when no layer is selected. A workaround for this could be to first send another MIDI 
message that presses the button for the desired layer on the desired manual, and then send 
the message for the register switch. But still, the actual behavior in that case would depend 
on the current state of the console, because if that layer happened to be selected already, 
then hitting the button via MIDI will actually cause it to deselect. Perhaps with more 
experimentation a solid way of controlling the Utopa registers via MIDI can be found, but I 
wouldn’t really recommend using MIDI for this, as whatever outcome such experimentation 
may have, it certainly will be a complex and inflexible set of messages that needs to be sent; 
i.e. more work, less music. The same goes for layer parameters such as transposition and 
pulse, and even the tremolo knobs and switches. The only other parameters beside the 
notes on the manual that can be MIDI controlled consistently are the four continuous foot 
pedals. They have their own MIDI address and will behave consistently.  
 
But, all is not lost, if you want to control the organ via MIDI and do need register changes, 
the Setzer is still at your disposal. Read how to control the Setzer via MIDI messages in the 
section 6.3 Setzer. 
  



Interface Manual / 3 How to control the organ 
 

 9 

OSC 
 
OSC control of the organ gets the most out of the instrument. Contrary to the MIDI 
implementation, the OSC implementation is not there by accident but deliberately designed 
for your controlling needs.  
 
The easy route to “go OSC” is using Ableton Live and the Max4Live device that I’ve created 
for you (included with this manual). This will internally convert MIDI data in Live to the OSC 
language of the organ, and give you control over all possible parameters, all registers in all 
layers, and allow you to play individual layers instead of whole manuals. You can also couple 
external MIDI controllers to any parameter, and of course use Live’s built-in arpeggiators 
and other MIDI effects to your liking. Some tips and tricks about this plugin can be found 
further in this manual in section 4.3 Using OSC with Ableton Live / Max4Live device. Another 
thing good to mention is that OSC on the Utopa/Sauer organ currently is a one-way street; 
the user can send messages to the organ to control it, but the organ will never send anything 
back. It is not possible to get the current status of the organ, so it is also not possible for the 
Max4Live device to know which registers were already set before the plugin was opened. 
When using OSC in general it is advised to start from the (empty) initial setting of the organ. 
 
The way to control the organ by OSC from an application that internally only supports MIDI 
(such as most DAW software), is to use our MIDI to OSC application. It comes with the 
manual and is available both as an app (macOS only) and a Max patch (cross-platform). The 
app can convert MIDI signals into OSC messages for the organ. It creates two virtual MIDI 
inputs on the machine you run it on, one for the notes and one for the settings and register 
controls (as said, a single MIDI connection doesn’t have enough flexibility to control all 
functionality of the organ). In your DAW, create an “external MIDI” channel, and choose one 
of the virtual MIDI inputs of the application to either play notes (optionally individually per 
layer) or send registrations and settings to the organ. The registrations are only possible with 
the app/patch, while sending MIDI notes can of course also be done via the regular MIDI to 
the organ. More information about the use of this app/patch can be found in section 4.4 
Using MIDI/OSC with the Orgelpark MIDI to OSC application. 
 
The (possibly) least easy but (maybe) more fun route is to dive into the OSC implementation 
yourself and use programming environments such as Max or SuperCollider to control your 
sound. Example patches in both languages are provided with this manual, including ready-
to-go code to play Patterns in SuperCollider and the MIDI to OSC application/max patch 
mentioned above. This way of dealing with the organ could cost more work (depending on 
your own workflow and familiarity with said environments) but ultimately will allow you to 
get to the most unique ways of controlling and playing the instrument. Think in the lines of 
playing the instrument entirely via knobs and faders or sensors, use live sound input to 
control the behavior of sound, create generative and/or interactive compositions etc..  Also, 
if you want to get to the extremes of what the organ mechanisms can do, it may be required 
to program this yourself, as the OSC implementation has some hidden gems that allow wild 
performance (such as very tight clusters), and usually a programmatic approach allows you 
to fine-tune much more on performance-sensitive details. 
 
 



Interface Manual / 3 How to control the organ 
 

 10 

Mixed 
 
It is also possible to mix both protocols. For example; the organ console also has a MIDI 
output, which will send out the notes played on specific layers (this can be set in the layer 
properties on the console screen). This could be used for example by creating an empty layer 
(with no sounding registers) on one of the manuals, send the MIDI to Ableton Live, process it 
with MIDI effects (arpeggiators etc.) and then via the Max4Live device send OSC back to 
other layers of the organ. This way the organ becomes its own MIDI controller. Also a 
combination of using OSC for registrations and settings and regular MIDI for playing notes is 
possible, and may be useful in situations where network traffic is high. 
 
  



Interface Manual / 4.1 Setting up and using MIDI 
 

 11 

4.1 Setting up and using MIDI 
 
To control the Utopa/Sauer console via MIDI from a computer, you will need at least: 

- 1 MIDI cable 
- 1 MIDI interface (usually an USB device, sometimes part of an Audio Interface) 

The MIDI cable connects to the “out” of your MIDI interface, and to the “in” on the organ 
console. MIDI connections on the console are located next to the power cable, at the left-
bottom side of the console. Depending on where your computer is standing you may need 
quite a long MIDI cable. 
 
In your sequencer / DAW application: select the correct MIDI output for your MIDI interface. 
Now you can play notes on the first four MIDI channels: 
 
MIDI Channel 1: Pedal section (P) 
MIDI Channel 2: Manual 1 (lower manual / I)  
MIDI Channel 3: Manual 2 (the middle manual / II) 
MIDI Channel 4: Manual 3 (the upper manual / III) 
 
The Setzer can be set using specific note messages. please refer to section 6 Console MIDI 
Implementation, further in this manual. 
 
To use the MIDI output of the console:  

- connect a second MIDI cable to the “out” of the console and the “in” of your MIDI 
interface 

- on the console, select a layer that you want to play and choose a midi channel for it 
in the on-screen settings tab 

 

4.2 Setting up OSC 
 
To set up OSC communication with the organ, a network cable (Ethernet Cat5e or better) is 
needed. The cable should be connected to your computer *) on one end and to the console 
on the other. The network connection on the console may be somewhat hard do find; it is a 
loose cable hanging under the console at the left side.  
 
Once connected, the network will organize itself and give your computer an IP address. In 
order not to disturb this it is best to turn off the WiFi connection on your computer. The 
network settings on your computer should be set to “Use DHCP” (which in most cases they 
probably already are). 
 
If multiple computers or devices are controlling the organ at 
the same time, an Ethernet / Network Switch (a device that 
basically acts as a “splitter” for network connections) has to 
be used. One of its ports should be connected to the organ 
via an Ethernet cable, and the other ports to the computers or devices that control the 
organ, each with their own Ethernet cable. The order of the ports has no influence on the 
functionality (so it doesn’t matter which device connects to which of the ports). There are 



Interface Manual / 4.3 Using OSC with Ableton Live / Max4Live device 
 

 12 

network switches available for this purpose at the Orgelpark with 8 ports, making it possible 
for a maximum of 7 computers/devices to be connected to the organ at the same time. For 
concert situations where different machines may control the organ per piece it is advisable 
to also use this switch so there doesn’t need to be any reconnecting during the concert. Just 
make sure that the connected machines don’t interfere with each other and don’t send 
messages to the organ when another piece is playing.  
 
If you are using OSC via the Max4Live device in Ableton Live or the MIDI to OSC 
application/Max patch, you are now ready to go. If you are using OSC in your own 
application you should know the OSC address of the console. The address is: 
 
IP: 192.168.0.1  
Port: 1803 
Protocol: UDP 
 
*) newer Apple MacBooks don’t have built-in Ethernet connectors. To use OSC with such a 
machine you will need an Ethernet-to-USB-C or Ethernet-to-Thunderbolt adapter (or another 
device that allows Ethernet output from your machine). 
 

4.3 Using OSC with Ableton Live / Max4Live device 

 
 
If you are using Ableton Live and the Max4Live device that comes with this manual, this is 
how to proceed: 

- open Ableton Live 
- install the device on your system (if you haven’t already done so) 
- on a MIDI track, insert the device named “Orgelpark OSC” (which should be located 

in Max for Live -> Max MIDI Effect). 
- Set the “MIDI To” field on the track to “No Output” (unless you want to output the 

same MIDI also to another instrument) 
 
On the device you can set which manual and layer you want this particular MIDI track to play 
on. You can also set wind and pedal, and if you click the “registers” button you get access to 
all registers and layer parameters, per layer. Each of the buttons and knobs can be 
automated by recording their movement in Arrangement view, or adding envelopes to your 



Interface Manual /  
 

 13 

clip in Session view. Also, MIDI or Key mappings can be assigned. If you want to process your 
MIDI before going to the organ, simply add a MIDI effect before the device on the track. 
 
When making register settings, be sure to enable the “active” button on in the registers 
window as well. Changes will be sent to the organ instantly, but you can also send all current 
settings of the selected layer at once with the “send” button. If you close your Set and open 
It again at a later moment, the device will automatically send the register settings for all 
layers and settings that have “active” on to the organ, so that it gets into the correct state (it 
is advisable to reset the organ before doing this). All settings will be saved only in your Set, 
and not on the organ console. If you use multiple instances of the M4L device in your Set, 
make sure that you don’t have overlapping register settings on the same layers in those 
devices. Good practice would be to only set the layer(s) that the device is playing on to 
“active”, so that that instance of the device controls and stores only those registers. 

 

4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 
 
If you are working with a DAW or other application that only sends MIDI, but still want to 
make use of the possibilities of the OSC interface, you can use our MIDI to OSC application 
(*) or Max patch (supplied with this manual). It allows users to convert MIDI messages 
(notes, pitch-bend and controller data) to OSC messages for the organ.  
 
In short, the app/patch supports the following features: 

• Note playback directly on individual layers, effectively creating a 16-part multi-
timbral device 

• Chord memory; grouping notes under individual keys 
• Direct control over registers per layer 
• Direct control over settings per layer 
• Register presets, created and applied via MIDI (no storage on organ console needed) 

 
The features mentioned above will be discussed in more detail on the next pages of this 
manual. 
 



Interface Manual / 4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 14 

The application has two MIDI inputs; the first one for notes the second one for registers and 
settings. If you are using the application these are named “to Orgelpark MIDI to OSC 1” and 
“to Orgelpark MIDI to OSC 2”, and if using the Max patch it is “to Max 1” and “to Max 2”. 
 
The application has a second window; the Max Console (and when using the Max patch this 
console is part of Max). When using the chord memory or register presets, messages can be 
seen in the Max Console informing about the status of your actions. It is also possible to 
show the messages sent to the organ by enabling the [x] button next to the [print @popup 
1] box. This can be useful when working at home without the actual organ present. 
 

 
 
Please note that the MIDI implementation of this application is different from that of the 
console itself. When controlling the console itself directly via MIDI please refer to section 4.1 
Setting up and using MIDI and section 6 Console MIDI Implementation. 
 
The Max patch was created as an example of how OSC control can be implemented in Max. 
Please feel free to use (parts of) it in your own Max patches, or extend its capabilities. 
 
*) the MIDI to OSC application is a standalone application for macOS, created with Max. On 
modern macOS machines however, the application will be blocked by the system’s 
protection services (macOS 10.14 and above). There are ways around this, but perhaps the 
best way is not to use the standalone application but the Max patch instead, and download 
and install Max to run it. If not licensed, Max can still run existing patches like this one, so it 
is not needed to buy the software. https://cycling74.com/downloads 
 
 
4.4.1 Playing notes 
 
The notes to play are to be sent to the first input of the program; “to Orgelpark MIDI to OSC 
1” or “to Max 1”. The program has an Individual layer mode (on by default) for the MIDI 
notes. In this mode the MIDI are played directly on the layers instead of the manuals. It 
assumes that there are only 4 layers per manual, and they can be chosen via the MIDI 
channel: 
 
MIDI Channels 1-4: Layer 1-4 of the pedal section (P) 
MIDI Channels 5-8: Layer 1-4 of manual 1 (the lower manual / I) 
MIDI Channels 9-12: Layer 1-4 of manual 2 (the middle manual / II) 
MIDI Channels 13-16: Layer 1-4 of manual 3 (the upper manual / III) 
 
If the “Individual layer mode” is off, the notes will play on all layers. In that case the channel 
order is as follows: 
 
MIDI Channel 1: Pedal section (P) 
MIDI Channel 2: Manual 1 (lower manual / I)  
MIDI Channel 3: Manual 2 (the middle manual / II) 
MIDI Channel 4: Manual 3 (the upper manual / III) 

https://cycling74.com/downloads


Interface Manual / 4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 15 

 
Also on the first input (“to Orgelpark MIDI to OSC 1” or “to Max 1”) there are some global 
settings as MIDI Control messages. These can be sent on any MIDI channel: 
 
MIDI Controller (cc) 1: Tremolo OW; frequency 
MIDI Controller (cc) 2: Tremolo OW; width / active * 
MIDI Controller (cc) 3: Tremolo HW; frequency 
MIDI Controller (cc) 4: Tremolo HW; width / active * 
MIDI Controller (cc) 5: Swell pedal 1 (Wind motor Utopa) 
MIDI Controller (cc) 6: Swell pedal 2 (Crescendo) 
MIDI Controller (cc) 7: Swell pedal 3 (Swell box Sauer) 
MIDI Controller (cc) 8: Swell pedal 4 (so far unassigned) 
 
The shortcuts are connections to some settings that are normally controlled via the second 
input (“to Orgelpark MIDI to OSC 2” or “to Max 2”), but are convenient to have together 
with the notes: 
 
MIDI Controller (cc) 64: Sustain 
Pitch bend: Transpose ** 
 
*) tremolo is off at values 0 and 127, and on at values 1-126 
**) the pitch transposition range can be set in the application/patch. Beware that this 
overrides the current transposition setting in the selected layers.  



Interface Manual / 4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 16 

4.4.2 Chord memory system 
 
The patch has a built-in system for assigning groups of notes to single note numbers. This 
enables users to use the special ability of the OSC implementation to send multiple notes in 
a single message. Doing so will make the organ respond faster and play tighter chords. The 
term chord in this case means a group of notes, which can have any size (i.e. a cluster of 
notes is also a chord, and this feature is especially handy for playing clusters faster and 
tighter than could be done with regular MIDI). 
 
MIDI Note 127 (G8) on “to Orgelpark MIDI to OSC 1” or “to Max 1” is used for assigning 
notes. When this note is pressed down (note-on) the system will start recording notes to put 
in the chord. This means that any note that is played while note 127 is on will not be 
sounding but only collected for the chord to store. Then, when all notes you want to be in 
the chord are collected, release note 127 (note-off). The first next note that is played (apart 
from note 127) is where the chord will be stored. 
 
Example; creating a chord note (sequence of note messages, velocity/channel are not used): 
Type    Note    Max Console window shows: 
noteOn   127 
noteOn   72 
noteOn   76 
noteOn   79 
noteOff   127 
noteOn   60 
 
After this example is played note 60 (C3) will play a major triad (C4, E4, G4). This happens 
system-wide, on any channel/layer. The notes of the chord will be played with the velocity 
and channel of the assigned note. 
 
 
To remove a chord from a note, simply follow the same procedure, but without playing any 
notes while note 127 is on. 
 
Example; removing the chord note: 
Type    Note    Max Console window shows: 
noteOn   127 
noteOff   127 
noteOn   60 
 
This will remove the existing chord from note 60, and from there on playing note 60 will 
sound C3 again. 
 
If you want to use chords in your MIDI score, the sequences to create them will have to be at 
the start of the score, before anything is playing. The Max patch / application in it's current 
version will forget the chords as soon as it is closed, so you need to create them again at 
your next session. 



Interface Manual / 4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 17 

4.4.3 Controlling registers 
 
Registers and settings can be controlled via the second MIDI input of the program; “to 
Orgelpark MIDI to OSC 2” or “to Max 2”. On this input the MIDI channel is used to assign a 
specific layer, in the same way as MIDI notes in “Individual layer mode”: 
 
MIDI Channels 1-4: Layer 1-4 of the pedal section (P) 
MIDI Channels 5-8: Layer 1-4 of manual 1 (the lower manual / I) 
MIDI Channels 9-12: Layer 1-4 of manual 2 (the middle manual / II) 
MIDI Channels 13-16: Layer 1-4 of manual 3 (the upper manual / III) 
 
Registers are set via MIDI Note messages. The note number corresponds with the number 
of the register as found on the organ. Please refer to the list of registers in this manual or the 
separately supplied csv and pdf files to look up the names and numbers of the registers. A 
note with a velocity larger than 63 will turn the register on, and a note with lower velocity 
will turn it off. There are also extra notes for resetting registers and turning on and off 
sections in the layers. Note-off or velocity 0 notes will be ignored (except for note 0). 
 
MIDI Note 0: reset / collect Utopa registers on layer *) 
MIDI Notes 1-35: Sauer registers (global/any MIDI channel), velocity > 63 on, velocity < 63 off 
MIDI Notes 36-68: Utopa registers on layer, velocity > 63 on, velocity < 63 off 
MIDI Note 70: all Sauer divisions off on layer 
MIDI Note 71-76: Sauer division 1-6 on layer, velocity > 63 on, velocity < 63 off 
MIDI Note 80: reset all Sauer registers (global/any MIDI channel) 
MIDI Note 81-86: reset Sauer registers in division 1-6 (global/any MIDI channel) 
 
*) The “reset / collect” function of MIDI Note 0 is a special case. It can be used for resetting 
all registers on the layer, but also to set a number of registers via one OSC message. It is 
advised to do so when you want to set more than 3 or 4 registers at the same moment. The 
system works as follows: 
 
When a note on MIDI Note 0 is started (note-on) the system goes in to “collect” mode for 
that MIDI Channel/layer. All Utopa register notes (36-68) on that MIDI Channel/layer played 
after this will not set the register immediately, but will be collected in a list. Once MIDI Note 
0 is released (note-off) this list will be sent to the organ, and all registers that are not in it 
will be turned off. If no registers are in the list then all registers are turned off. 
 
Example (sequence of note messages): 
Type    note    velocity    channel 
noteOn   0           127          13 
noteOn   38      127            13 
noteOn   39        127         13 
noteOff   0          (0)             13 
 
Clears current Utopa register setting on Manual III, Layer 1 and enables registers 38 and 39 
(Rohrflott 8', Quintathen 8')  



Interface Manual / 4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 18 

4.4.4 Register presets 
 
Similar to the function of storing chords (discussed in 4.4.2 Chord Memory System) there is a 
memory for register settings. MIDI Notes 87 to 126 (Eb5 to F#8, on “to Orgelpark MIDI to 
OSC 2” or “to Max 2”) are reserved for this. To store a preset, first play MIDI Note 127 (G8), 
then play the register notes you want to be in the preset (they can be Sauer registers (1-35), 
Utopa registers (36-68) or Sauer divisions (71-76)), with a velocity higher than 63, on any 
MIDI channel. After that, play the note to which you want to assign the preset (87 to 126). 
From then on, the preset is sent to the organ whenever you play that note, on the layer 
corresponding to the channel the note is played on.  
 
Beware that also the velocity of the note is recorded, and the preset will only be sent when 
the exact same velocity is used. This means that you could (theoretically) store 126 different 
presets on a single note (each on a different velocity value), giving you a total of 40 * 126 = 
5040 (!) slots to store presets in. 
 
Example; storing a register preset (any channel, note offs are ignored): 
Type    note    velocity        Max Console shows                                 
noteOn   127      <any> 
noteOn   38      127 
noteOn   39        127 
note0n    90        1 
 
 
From then on, playing note 90 with velocity 1 will set Utopa registers 38 and 39 (Rohrflott 8', 
Quintathen 8'), on the layer corresponding with the MIDI channel (see 4.4.3 Controlling 
Registers). The preset will turn off all other Utopa registers on that layer. 
 
Note that if only Utopa registers are used in the preset (like in the example above), the Sauer 
registers and division settings remain untouched when using the preset. If only Sauer 
registers are used, the Utopa registers will remain untouched, and if only Sauer divisions are 
used, the rest will remain untouched. Registers and divisions of both organs can also be 
combined in a single preset. 
 
In the current version, the presets remain in the memory of the Max Patch / application 
until it is stopped. The next time you open the patch you need to send the MIDI notes that 
create your preset(s) again to be able to use them. 
 
Using the register preset system is advised when you have multiple large register changes in 
your piece. A register preset is sent as a single OSC message to the organ, and thus faster 
and more reliable than sending individual register on/off notes. 
  



Interface Manual / 4.4 Using MIDI/OSC with the Orgelpark MIDI to OSC application 
 

 19 

4.4.5 Controlling settings 
 
Settings are controlled via MIDI Control messages (cc) on the second input (“to Orgelpark 
MIDI to OSC 2” or “to Max 2”). The numbering of these messages starts at 15 and the order 
is the same as that of the physical knobs on the organ console. Most of the settings on the 
console also have an on/off switch. In the MIDI to OSC application this is done automatically 
for convenience (i.e. to keep the control structure as simple and small as possible).  
 
MIDI Controller 15: Left MIDI note limit (value 0: off, value 1-127: note 1-127) 
MIDI Controller 16: Right MIDI note limit (value 0-126: note 0-126, value 127: off) 
MIDI Controller 17: Transpose (value 28-63: -36 to -1, value 64: 0/off, value 65-100: 1 to 36) 
MIDI Controller 18: Delay (value 0-127: 0ms (off)  to 4096ms) 
MIDI Controller 19: Pulse frequency (value 1-127: 5ms to 5bpm, value 0: off) 
MIDI Controller 20: Pulse width (value 1-127: 0% - 100%) 
MIDI Controller 21: Staccato (value 1-127: 2ms to 1000ms, value 0:off )  
MIDI Controller 22: Prolong (value 0-127: 0ms (off) to 2000ms)  
MIDI Controller 23: Sustain (value 0-127: 0% (off) to 100%) 
MIDI Controller 24: Dynamic width (value 0-127: 0% (off) to 100%) 
MIDI Controller 25: Dynamic center (value 0-127: 0% to 100%) 
MIDI Controller 26: Minimum velocity (value 0-127: 0% (off) to 100%) 
MIDI Controller 27: Maximum velocity (value 0-127: 0% to 100%(off) ) 
MIDI Controller 28: MIDI output for layer (value 0: off, value 1-16: channel 1-16) 
  



Interface Manual / 4.5 Using OSC with other software 
 

 20 

4.5 Using OSC with other software 
 
With applications such as SuperCollider and Max it is possible to control the digital organ 
console directly via OSC. The OSC implementation (further in this manual) describes 
precisely how OSC messages sent to the organ should be composed, and what functionality 
can be accessed with them. OSC messages are (small) network packets in a format specified 
by the Open Sound Control 1.0 Specification (http://opensoundcontrol.org/spec-1_0). They 
typically consist of an address (text) and one or more values (numbers and/or text). The 
messages are sent to a network port on the organ console, which is specified using an IP 
address and a port number. As shown in section 4.2 Setting up OSC these are:  
 
IP: 192.168.0.1 
Port: 1803 
 
Each application supporting OSC has a different way of specifying port and address, and also 
different ways of sending messages to them. In SuperCollider, for example, the address and 
port are set in a NetAddr object. Messages can be sent to the console via the sendMsg 
method and equivalent (look up the helpfile for NetAddr to see all possibilities). An example 
for starting a note 69 (A3) on the 3rd manual with velocity 80% could look like this: 
 
n = NetAddr( "192.168.0.1", 1803 ); // define address and port 
 
n.sendMsg( "/M3/V", 0.8, 69 ); // send note 
 
 
In Max messages can be sent using the udpsend object. Messages can be sent by sending a 
list to the object. The above example could look like this: 
 

 
 
 
In Csound an instrument that plays the above example could look like this: 
 
instr 1 
  OSCsend 1, "192.168.0.1", 1803, "/M3/V", "fi", 0.8, 69 
endin  

http://opensoundcontrol.org/spec-1_0


Interface Manual / 4.5 Using OSC with other software 
 

 21 

In Pd the above example could look like this: 

 
 
In Processing, using the oscP5 library by Andreas Schlegel the example could look like this: 
 
import oscP5.*;   
import netP5.*; 
 
OscP5 oscP5; 
NetAddress myRemoteLocation; 
 
oscP5 = new OscP5(this, 12000);   //listening 
myRemoteLocation = new NetAddress("192.168.0.1", 1803);  //  speak to 
 
OscMessage newMessage = new OscMessage("/M3/V");   
newMessage.add( 0.8 );  
newMessage.add( 69 );  
oscP5.send(newMessage, myRemoteLocation); 

 
 
In Python, using the pyOSC module by Daniel Holth and Clinton McChesney 
(https://github.com/ptone/pyosc) the example could look like this: 
 
#!/usr/bin/env python3 
from OSC import OSCClient, OSCMessage 
 
client = OSCClient() 
client.connect( ('192.168.0.1', 1803) ) 
 
client.send( OSCMessage("/M3/V", [ 0.8, 69 ] ) ) 
 
 
In JavaScript / Node.js, using in this case the node-osc library from Myles Borins 
(https://github.com/MylesBorins/node-osc) the example could look like this: 
 
var osc = require('node-osc'); 
 
var client = new osc.Client('192.168.0.1', 1803); 
 
client.send('/M3/V', 0.8, 69, function () { 
  client.kill(); 
}); 
 

https://github.com/ptone/pyosc
https://github.com/MylesBorins/node-osc


Interface Manual / 4.5 Using OSC with other software 
 

 22 

When using OSC it is important to be aware about the difference in value types. The OSC 
implementation of the digital organ console uses three types: String, Float and Integer. In 
the case of the above example the message to be sent consists of a String, followed by one 
Float and one Integer. 
 
Strings are usually defined in programming languages by the enclosing " " signs. As OSC 
doesn’t support Symbols, in most languages it is ok to use Symbols instead of Strings, or to 
mix them (this also happens in the Max example above).  
 
The distinction between Integers (whole numbers) and Floats is important, as they are 
interpreted differently by the console. For example, in the note message examples above, 
the 0.8 for velocity is a Float, and the 69 for note is an Integer. Most software automatically 
switches to Float as soon as a “.” is notated in the number (i.e. 0.0 will become Float 0.0, and 
0 will become Integer 0), but in some cases you will need to specify this manually (i.e. 
Csound). 
 
Also, many OSC implementations regard the first String of the OSC message as “address”. As 
shown in the various examples some programs treat this as a separate part, and others 
simply include it in the list. 
  



Interface Manual / 5 OSC implementation 
 

 23 

5 OSC implementation 
 
The OSC implementation describes how OSC messages sent to the digital organ console 
should be formatted. How this information can be used in various programming 
environments can be read in section 4.5 Using OSC with other software. For the 
implementation I’m using a standard notation derived from SuperCollider. OSC messages are 
Arrays containing Strings and values (Float / Integer). 
 
5.1 Notes 
 
The standard OSC message to start and end notes consists of at least three parts: 

• An address String (manual, layer and note command) 
• A velocity value (Float 0.0-1.0) 
• One or more note numbers (Integer 0-127) 

 
[ address String, velocity value, … note number(s) ] 
 
The address String exists in two variants:  
 
"/M<manual>/V" 
<manual>: manual number 0,1,2,3, where 0 means the Pedal section 
 
"/M<manual>/L<layer>/V" 
<manual>: manual number 0,1,2,3, where 0 means the Pedal section 
<layer>: layer number 1 to 4 or more (depending on number of existing layers) 
 
In the (latter) case where the layer is included in the address String the note will only play on 
the specified layer. 
 
The velocity value is a Floating point number (0.0 - 1.0) which defines the strength of the 
note. Depending on this the organ valves will open slower or faster and layers that have 
velocity-switching enabled will react accordingly. A velocity value of 0.0 will end the note. 
 
The note number(s) are Integers (0-127) with a note number in MIDI style (69 = A3). There 
can be any number of these in the message, and all of them will be either started or stopped 
(depending on the velocity value). 
 
Examples: 
 
[ "/M3/V", 0.8, 69 ]  :  starts note A3 with velocity 80% on Manual III (all Layers) 
[ "/M3/V", 0.0, 69 ]  :  ends the above note 
[ "/M1/L1/V", 0.75, 60, 63, 67 ]  :  starts three notes with velocity 75% on Manual I, Layer 1 
 
  



Interface Manual / 5 OSC implementation 
 

 24 

5.2 Registers Utopa 
 
The registers of the Utopa organ can be set per Layer (be aware that the Sauer registers are 
set with a different message type). The message to do so consists of at least two parts: 

• An address String (manual, layer and register command) 
• One or more register numbers (Integer)  

 
[ address String, … register number(s) ] 
 
The address String points to the manual and layer where the registers should be set:  
 
"/M<manual>/L<layer>/S" 
<manual>: manual number 0,1,2,3, where 0 means the Pedal section 
<layer>: layer number 1 to 4 or more (depending on number of existing layers) 
 
The register number(s) are the numbers of the registers to be turned on or off. The number 
correspond to the numbers shown on the console, ranging from 36 to 68. When a register 
needs to be set, it's number should be included in the list. If a register needs to be closed, a 
negative number must be added. To close all registers (on the layer) at once a number 0 can 
be used: 
 
36 to 38: turn on register 36 to 68 
-36 to -68: turn off register 36 to 68 
0: turn off all registers 
 
It is common practice to send single positive / negative numbers in a message when only a 
small change is made. To replace the registration of a layer completely in one message, the 
message could start with a 0 and then be followed by the register numbers that should be 
(or stay) on. 
 
Examples: 
[ "/M3/L1/S", 37 ]  :  turn on register 37 (Principal 8') on Manual III, Layer 1 
[ "/M3/L1/S", -37 ]  :  turn off register 37 (Principal 8') on Manual III, Layer 1 
[ "/M2/L2/S", 0 ]  :  turn off all registers on Manual II, Layer 2 
[ "/M1/L1/S", 0, 37, 38, 50, 61 ]  :  set registers 37, 38, 50, 61 on and the rest off on M. I, L. 1 
 
Warning: Please note that in the current version of the Sinua organ console software the 
register setting via OSC can cause the console to crash. This happens when too many register 
change messages are sent in a short time (1000 or more per second), or if you send some 
settings immediately after a “/panic” message. If you want to create the effect of quick 
register changes it is better to use layers and notes for that. 
 
 
  



Interface Manual / 5 OSC implementation 
 

 25 

5.3 Registers Sauer 
 
The registers for the Sauer organ use two different message types. One is for turning the 
individual registers on and off, and the other is for assigning the divisions to specific layers. 
In order to make these you must know the 6 different divisions in which the registers are 
divided, and for each register in which division it is. The divisions are shown using colors on 
the organ console. They are as follows: 
 
_____  Division 1 (grey):  12, 13, 15, 16, 17 
_____  Division 2 (green):  14, 18, 19, 20 
_____  Division 3 (white):  1, 3, 4, 7, 8, 11, 21 (motor ab) 
_____  Division 4 (blue):  2, 5, 6, 9, 10, 19 
_____  Division 5 (yellow):  22, 23, 24, 25, 26, 27, 28, 29 (tremolo) 
_____  Division 6 (pink):  30, 31, 32, 33, 34, 35 
 
The message for switching individual registers on and off consists of at least two parts: 

• An address String (division and register command) 
• One or more register numbers (Integer)  

 
[ address String, … register numbers ] 
 
The address String points to the division in which the registers should be set:  
 
"/D<division>/S" 
<division>: division number (1-6) 
 
The register number(s) are the numbers of the registers to be turned on or off. The number 
correspond to the numbers shown on the console, ranging from 1 to 35. Beware that the 
command only works if the stop you set with it is in the division chosen in the address String 
(i.e. setting register 14 can only be done on division 2). When a register needs to be set, it's 
number should be included in the list. If a register needs to be closed, a negative number 
must be added. To close all registers (on the division) at once a number 0 can be used: 
 
1 to 35: turn on register 1 to 35 (depending on division) 
-1 to -35: turn off register 1 to 35 (depending on division) 
0: turn off all registers on division 
 
Examples: 
[ "/D1/S", 15 ]  :  turn on register 15 (Cello 8') 
[ "/D1/S", -15 ]  : turn off register 15 
[ "/D2/S", 0 ]  :  turn off all registers in division 2 (i.e. 14, 18, 19 and 20) 
[ "/D5/S", 0, 23, 24 ]  :  turn on only registers 23 and 24 in division 5. 
 
 
 
 
 



Interface Manual / 5 OSC implementation 
 

 26 

 
 
5.4 Divisions Sauer 
 
The OSC message for assigning a division of Sauer registers to a layer is similar to that of 
assigning Utopa registers. These divisions correspond with the colored square buttons in the 
middle of the console, in between the (black) Utopa register switches. The message consists 
of at least two parts: 

• An address String (manual, layer and division command) 
• One or more division numbers (Integer)  

 
[ address String, … division number(s) ] 
 
The address String points to the manual and layer where the registers should be set:  
 
"/M<manual>/L<layer>/D" 
<manual>: manual number 0,1,2,3, where 0 means the Pedal section 
<layer>: layer number 1 to 4 or more (depending on number of existing layers) 
 
The division number(s) are the numbers of the divisions to be turned on or off (1-6, see 
description in 5.3 Registers Sauer). When a division needs to be assigned to a layer, it's 
number should be included in the list. If a division needs to be turned off, a negative number 
must be added. To close all divisions (on the layer) at once a number 0 can be used: 
 
1 to 6: turn on division 1 to 6 
-1 to -6: turn off division 1 to 6 
0: turn off all divisions 
 
Examples: 
[ "/M3/L1/D", 3 ]  :  turn on division 3 (white) on Manual III, Layer 1 
[ "/M3/L1/D", -3 ]  :  turn off division 3 (white) on Manual III, Layer 1 
[ "/M0/L2/D", 0 ]  :  turn off all divisions on the Pedal section, Layer 2 
[ "/M2/L1/D", 0, 2, 3, 4 ]  :  turn on only divisions 2,3,4 on Manual II, Layer 1 
 
Example for setting a specific Sauer register on a specific layer: 
[ "/D5/S", 0, 23 ]  :  turns on only register 23, followed by: 
[ "/M3/L1/D", 5 ]  : turns on the corresponding division on Manual III, Layer 1 
 
Warning: Please note that in the current version of the Sinua organ console software the 
register setting, also for Sauer registers and divisions, via OSC can cause the console to crash. 
This happens when too many register change messages are sent in a short time (1000 or 
more per second), or if you send some settings immediately after a “/panic” message. If you 
want to create the effect of quick register changes it is better to use layers and notes for that.  



Interface Manual / 5 OSC implementation 
 

 27 

5.5 Layer settings 
 
It is also possible to control Layer parameters via OSC. Each of the parameters has their own 
command, and particular type(s) of values that can set it. Please note that the OSC 
implementation for layer settings is a bit buggy and sometimes inconsistent in the current 
version of the console, in particular the Sustain parameter which is not really usable. 
 
In general the layer setting message consists of 2 or 3 parts: 

• An address String (manual, layer and parameter command) 
• A Float or Integer to set the value (sometimes both options are available) 
• Optional: a String stating "on" or "off" 

 
[ address String, value (Float/Integer), "on" / "off" (optional) ] 
 
The address String points to the manual and layer, and which parameter should be set:  
 
"/M<manual>/L<layer>/<parameter>" 
<manual>: manual number 0,1,2,3, where 0 means the Pedal section 
<layer>: layer number 1 to 4 or more (depending on number of existing layers) 
<parameter>: name of the parameter to be set 
 
The value can be a Float or Integer, range depending on the parameter that is being set. 
 
The "on" / "off" String can be added to turn on and off the parameter. This applies to every 
parameter, but there are some cases where it renders unexpected results or is not necessary 
(noted below). Note that while it is possible to add "on" / "off" to a message with a value, it 
is not possible to leave out the value and send only the "on" / "off". 
 
The following parameters can be set using the exact names - case sensitive - as parameter 
command (in order of their appearance on the organ console): 
 
Left (left note limit) 
value: Integer (0-127) sets the note limit in MIDI note format (69 = A3) 
"on" / "off": enables / disables the limit 
 
Right (right note limit) 
value: Integer (0-127) sets the note limit in MIDI note format (69 = A3) 
"on" / "off": enables / disables the limit 
 
Transpose 
value:  

- Integer (-36 to 36) sets the transposition amount in semitones 
- Float (-1.0 to 1.0) sets the transposition amount (-36 to 36) 

"on" / "off": enables / disables transposition 
  



Interface Manual / 5 OSC implementation 
 

 28 

 
Delay 
value: Integer (0 to 5000) sets the amount of delay in ms, 
"on" / "off": enables / disables delay 
 
Staccato 
value: Integer (2 to 1000) sets the staccato duration in ms 
"on" / "off": enables / disables staccato 
 
Prolong 
value: Integer (0 to 2000) sets the time the note is extended after release 
"on" / "off": enables / disables the prolong function 
 
PulseFreq (pulse frequency) 
value:  

- Integer (-240 to 240) sets the pulse speed; 
o -240 to -1: 5bpm to 244bpm 
o 0 to 240: 245ms to 5ms 

- Float (-1.0 to 1.0) sets the pulse speed; 
o -1.0 to 0.0: 5bpm to 245bpm 
o 0.0 to 1.0: 245ms to 5ms 

Please note; in contrast to the Tremolo function (section 5.6 Utopa Tremolo), String 
messages like "200bpm" or "150ms" are not accepted by PulseFreq. 
"on" / "off": enables / disables pulse function 
 
PulseWidth (pulse width 
value: Integer (0 to 100) or Float (0.0 to 1.0)  sets the with of the pulse 
"on" / "off" 
 
Sustain 
value: Integer (0 to 100) or Float (0.0 to 1.0) sets the amount of sustain. 
"on" / "off": enables / disables the sustain function 
 
DynWidth (dynamics width, relates to relation between velocity and valve speed) 
value: Integer (0 to 100) or Float (0.0 to 1.0) sets the amount of dynamic width 
"on" / "off": enables / disables the dynamic width; functionality unknown 
 
DynCenter (dynamics width, relates to relation between velocity and valve speed) 
value: Integer (0 to 100) or Float (0.0 to 1.0) sets the center of the dynamic range. 
"on" / "off": enables / disables the dynamic center; functionality unknown 
 
VelMin (velocity minimum) 
value: Integer (0 to 100) or Float (0.0 to 1.0) sets the minimum amount of velocity to be used 
to make the layer sound (default = 0%) 
"on" / "off": enables / disables the velocity minimum 



Interface Manual / 5 OSC implementation 
 

 29 

VelMax (velocity maximum) 
value: Integer (0 to 100) or Float (0.0 to 1.0) sets the minimum amount of velocity above 
which the layer doesn't sound (default 100%) 
"on" / "off": enables / disables the velocity maximum 
 
Midi (MIDI output channel) 
value: Integer (1 to 16) sets the output MIDI channel of the layer 
"on" / "off": enables / disables the MIDI output 
 
 
Examples: 
[ "/M3/L1/Transpose", -12, "on" ]  :  set transposition on Manual III, layer 1 to -12 and on 
[ "/M3/L1/Transpose", 0, "off" ]  :  set transposition on Manual III, layer 1 to 0 and off 
[ "/M1/L1/PulseFreq", -100, "on" ]  :  set the pulse on Manual I, Layer 1 to 145BPM and on 
[ "/M1/L1/PulseWidth", 50 ]  :  set the pulse width on Manual I, Layer 1 to 50% 
[ "/M2/L2/Staccato", 20, "on" ]  :  set staccato on Manual II, Layer 2 to 20ms and on 
 
 
5.6 Utopa Tremolo 
 
The messages for controlling the Utopa tremolos can be composed as follows: 

• Tremolo address String ("/TremOW" or "/TremHW") 
• a String for the tremolo speed (optional) 
• a Float for the tremolo width (optional) 
• a String "on" / "off" for enabling / disabling the tremolo (optional) 

 
[ address String, speed String (optional), width Float (optional), "on"/"off" (optional) ] 
 
Each of the speed, width and "on"/"off" values can be left out, and the order of the values 
can also be different. The console recognizes the values by type. 
 
The address String points to one of the two tremolos; /TremOW (obenwerk) applies to 
registers 49 to 61, and /TremHW (hauptwerk) to registers 36 to 48. 
 
The string for tremolo speed should be formatted as follows:  
"<amount><units>" 
amount: amount (5 to 245) 
units: "ms" or "bpm" 
 
The Float for width ranges from 0.0 to 1.0 and sets the width percentage from 0% to 100% 
 
The "on" / "off" string turns the tremolo on or off. 
 
Examples: 
[ "/TremOW", "100bpm", 0.3, "on" ] : set tremolo OW to 100bpm, width 30% and on 
[ "/TremHW", "200ms", 0.7, "on" ]  : set tremolo HW to 200ms, width 70% and on 
[ "/TremHW", "off" ]  : turn tremolo HW off  



Interface Manual / 5 OSC implementation 
 

 30 

5.7 Swell pedals 
 
The swell pedals are numbered from 0 to 3 in the OSC Implementation. The message to set 
their value can be composed as follows: 

• an address String (pointing to the pedal) 
• a value (Float) 

 
[ address String, value (Float) ] 
 
The address String is formatted as follows: 
 
"SP<pedal>" 
pedal: the number of the pedal; 

- 0: Wind motor Utopa 
- 1: Crescendo pedal 
- 2: Swell box Sauer 
- 3: (unknown/currently unassigned) 

 
The value should be a Float ranging from 0.0 to 1.0 
 
Examples: 
[ "/SP0", 1.0 ]  :  set wind for Utopa to maximum 
[ "/SP0", 0.5 ]  :  set wind for Utopa to halfways 
[ "/SP2", 0.0 ]  :  close the swell box of the Sauer organ 
 
 
5.8 Setzer 
 
In the current implementation stored Setzer setting be recalled via OSC. There are 
commands for: 

• the next slot 
• the previous slot 
• calling an individual slot 
 

 
 Storing Setzer data is not possible via OSC.  
 
[ address String, command String, value String ] 
 
The address String is as follows: 
 
"/Setzer” 
 
The command String can be: 
“next” 
“previous” 
“call” 



Interface Manual / 5 OSC implementation 
 

 31 

The value String is only used for the “call” command. It is composed as follows: 
 
“<bank><letter><index>0” 
bank : the bank number, always three digits between 001 and 999 
letter: the letter, in capital (A-E) 
index: the index, always two digits between 01 and 10 
 
Note that after the index number there is always an extra “0”. The bank number can be 
anything below 999, but experience learns that higher bank numbers only get called when 
they actually have a preset stored in them, and it is actually very hard from the organ 
interface itself to reach a bank number over 100. With “next” and “previous” it is also 
possible to go to empty presets. Please also be aware that the OSC functionality of the 
Setzer currently only features recall of settings and doesn’t have options to store anything. 
 
Examples: 
[ “/Setzer”, “call”, “001A020” ] : call preset 1 A 2 
[ “/Setzer”, “call”, “010C100” ] : call preset 10 C 10 
[ “/Setzer”, “next” ] : call next preset 
[ “/Setzer”, “previous” ] : call previous preset 
 
 
5.9 Single commands 
 
There are a few single commands. A single command only consists of an address String, 
there are no additional values. 
 
[ address String ] 
 
The address String for creating layers is composed as follows: 
 
"/M<manual>/createLayer" 
<manual>: manual number 0,1,2,3, where 0 means the Pedal section 
 
There is also a command for resetting the console. When used, all registers are turned off in 
all layers, all layer settings are set to default values, all extra layers are removed (so that only 
the original 4 layers per manual remain) and all currently playing notes are stopped. The 
address String for this command is as follows: 
 
"/panic" 
 
Examples: 
[ "/M3/createLayer" ] : add a layer to Manual III 
[ "/panic" ] : reset everything and stop sounding notes 
  



Interface Manual / 6 Console MIDI implementation 
 

 32 

6 Console MIDI implementation 
 
The digital console for Utopa and Sauer organs can be controlled via MIDI. In fact, the 
console itself is a MIDI controller. Each of the manuals, pedals, knobs and keys sends out a 
MIDI signal to the computer inside the console, controlling all of its functionality. The MIDI 
implementation of the console is fully created with this purpose. If you want to control the 
device via external MIDI, you will need to send the same MIDI messages as the console itself 
does, and the software makes no distinction to where the MIDI comes from. I.e. it acts as if 
the buttons, keys and knobs were pushed on the console itself. As explained in section 3 
How to control the organ, this is good if you just want to play notes. And not so good if you 
want to access any of the other functionality of the machine, unless you know very well 
what you are doing. For controlling registers and settings on the device I strongly recommend 
using OSC instead, but, if you insist, below is a list of the MIDI messages the device 
understands. 
 
6.1 Notes 
The manuals and pedal section of the digital console each have their own MIDI channel. 
Notes can be played by sending MIDI note on / note off to the corresponding channel: 
 
MIDI Channel 1: Pedals 
MIDI Channel 2: Manual I 
MIDI Channel 3: Manual II 
MIDI Channel 4: Manual III 
 
The console also understands velocity values, and can for example switch layers on and off 
via velocity. 
 
6.2 Swell pedals 
The swell pedals of the digital console can be controlled via MIDI control messages (cc).  
 
MIDI Channel 2, Control 1 (modulation): Utopa wind motor 
MIDI Channel 4, Control 1 (modulation): Sauer wind chest 
 
6.3 Setzer 
The only way to operate the organ's Setzer system is to trigger the buttons for the Setzer 
directly via MIDI note on / off messages. These messages are on MIDI Channel 15 (counting 
from 1-16), and sending a message has the same effect as pressing the physical button on 
the console (MIDI note 0 = C-2). 
 

  

RF S A CB ED 1 32 54 6 87 109 0

banks positions

MIDI Notes, channel 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21



Interface Manual / 6 Console MIDI implementation 
 

 33 

6.4 "The rest" 
All other functionality can only be controlled by directly sending the same messages as the 
console does itself when touching knobs or hitting keys. As knobs and buttons can change 
function according to context it is hard to know what you actually control when sending 
these messages yourself. But if you want to try, here is a list. Beware that the physical 
register switches will not flip when the message is sent. MIDI channels count from 1-16. 
 
 

Channel Note Description  
14 0 1 Dulciana 8'  
14 1 2 Bourdon 8'  
14 2 3 Flute harmonique 8'  
14 3 4 Gamba 8'  
14 4 5 Principal 8'  
14 5 6 Rohrflo_te 4'  
14 6 7 Octave 4'  
14 7 8 Bourdon 16'  
14 8 9 Rauschquinte 2 2/3' 2'  
14 9 10 Cornett-Mixtur 3-5fach  
14 10 11 Trompete 8'  
14 11 12 Schwellgedeckt 16'  
14 12 13 Subbass 16'  
14 13 14 Cello 8'  
14 14 15 Bassflo_te 8'  
14 15 16 Octavbass 8'  
14 16 17 Contrabass 16'  
14 17 18 Contrabass 32'  
14 18 19 Posaune 16'  
14 19 20 Posaune 32'  
14 20 21 Motor ab  
14 21 22 Quintato_n 8'  
14 22 23 Konzertflo_te 8'  
14 23 24 Voix celeste 8'  
14 24 25 Violine 4'  
14 25 26 Traversflo_te 4'  
14 26 27 Flautino 2'  
14 27 28 Harmonia aeteria 3fach  
14 28 29 Tremulant  
14 29 30 Aeoline 8'  
14 30 31 Fugara 8'  
14 31 32 Flo_tenprincipal 8'  
14 32 33 Lieblich Gedeckt 16'  
14 33 34 Oboe 8'  
14 34 35 Clarinette 8'  

    
14 35 36 Burdun 16‘  
14 36 37 Rohrflo_tt 8‘  
14 37 38 Quintath. 8‘  
14 38 39 Octav 4‘  
14 39 40 Gemshorn 4‘  
14 40 41 Weitpfeiffe 2‘  
14 41 42 Sexquintaltra II  
14 42 43 Mixtur V  
14 43 44 Cymbel III  
14 44 45 Cornett V  
14 45 46 Fagott 16‘  
14 46 47 Trompet 8‘  
14 47 48 Gedackt 8‘  
14 48 49 Gedackt 8‘  
14 49 50 Violdigamba 8‘  
14 50 51 Unda maris 8‘  
14 51 52 Principal 4‘  
14 52 53 Rohrflo_tt 4‘  
14 53 54 Nassat 3‘  
14 54 55 Octav 2‘  
14 55 56 Waldflo_tt 2‘  
14 56 57 Tertia 1 3/5‘  

14 57 58 Quinta 1 1/3‘  
14 58 59 Su_fflött 1‘   
14 59 60 Scharff IV  
14 60 61 Vox humana 8‘  
14 61 62 Principal 16‘  
14 62 63 Subbass 16‘  
14 63 64 Quintbass 12‘  
14 64 65 Octav 8‘  
14 65 66 Posaune 16‘  
14 66 67 Posaune 8‘  
14 67 68 Clarin 4‘  

    
14 68 1 sauer grey  
14 69 2 sauer green  
14 70 3 sauer white  
14 71 4 sauer blue  
14 72 5 sauer yellow  
14 73 6 sauer pink  

    
14 74  16 
14 75  8 
14 76  4 
14 77  chord  
14 78  bass  
14 79  melody  

    
14 80 Layer Open  P.1  
14 81 Layer Open  P.2  
14 82 Layer Open  P.3  
14 83 Layer Open  P.4  
14 84 Layer Open  I.1  
14 85 Layer Open  I.2  
14 86 Layer Open  I.3  
14 87 Layer Open  I.4  
14 88 Layer Open  II.1  
14 89 Layer Open  II.2  
14 90 Layer Open  II.3  
14 91 Layer Open  II.4  
14 92 Layer Open  III.1  
14 93 Layer Open  III.2  
14 94 Layer Open  III.3  
14 95 Layer Open  III.4  

    
14 96 Layer Mute  P.1  
14 97 Layer Mute  P.2  
14 98 Layer Mute  P.3  
14 99 Layer Mute  P.4  
14 100 Layer Mute  I.1  
14 101 Layer Mute  I.2  
14 102 Layer Mute  I.3  
14 103 Layer Mute  I.4  
14 104 Layer Mute  II.1  
14 105 Layer Mute  II.2  
14 106 Layer Mute  II.3  
14 107 Layer Mute  II.4  
14 108 Layer Mute  III.1  
14 109 Layer Mute  III.2  
14 110 Layer Mute  III.3  
14 111 Layer Mute  III.4  
14 112 Layer Sustain  P.1  
14 113 Layer Sustain  P.2  



Interface Manual / 6 Console MIDI implementation 
 

 34 

14 114 Layer Sustain  P.3  
14 115 Layer Sustain  P.4  
14 116 Layer Sustain  I.1  
14 117 Layer Sustain  I.2  
14 118 Layer Sustain  I.3  
14 119 Layer Sustain  I.4  
14 120 Layer Sustain  II.1  
14 121 Layer Sustain  II.2  
14 122 Layer Sustain  II.3  
14 123 Layer Sustain  II.4  
14 124 Layer Sustain  III.1  
14 125 Layer Sustain  III.2  
14 126 Layer Sustain  III.3  
14 127 Layer Sustain  III.4  

    
15 0 Setzerleiste  RF  
15 1 Setzerleiste  S  
15 2 Setzerleiste  E-  
15 3 Setzerleiste  E+  
15 4 Setzerleiste  A  
15 5 Setzerleiste  B  
15 6 Setzerleiste  C  
15 7 Setzerleiste  D  
15 8 Setzerleiste  E  
15 9 Setzerleiste  <  
15 10 Setzerleiste  >  
15 11 Setzerleiste  1 
15 12 Setzerleiste  2 
15 13 Setzerleiste  3 
15 14 Setzerleiste  4 
15 15 Setzerleiste  5 
15 16 Setzerleiste  6 
15 17 Setzerleiste  7 
15 18 Setzerleiste  8 
15 19 Setzerleiste  9 
15 20 Setzerleiste  10 
15 21 Setzerleiste  0 

    
15 24 new Layer   
15 25 OK   
15 26 edit   
15 27 ESC   

    
15 30  <  
15 31  >  
15 32  ins  
15 33  del  
15 34  cpy  
15 35  pst  
15 36 Crescendi  1 
15 37 Crescendi  2 
15 38 Crescendi  3 
15 39 Crescendi  4 
15 40  on/off  
15 41 n.c.   
15 42  >  

    
15 43 pedal left  Loops 
15 44 pedal right  Loops 
15 45 First manual left  Loops 
15 46 First manual right  Loops 
15 47   
15 48  <  
15 49  >  
15 50 Midirecorder  rec  
15 51  ply  
15 52  stp  
15 53  rew  
15 54  fwd  

    
15 56 Encoder (cap press)  1 
15 57 Encoder (cap press)  2 

15 58 Encoder (cap press)  3 
15 59 Encoder (cap press)  4 
15 60 Encoder (cap press)  5 
15 61 Encoder (cap press)  6 
15 62 Encoder (cap press)  7 
15 63 Encoder (cap press)  8 
15 64 Encoder (cap press)  9 
15 65 Encoder (cap press)  10 
15 66 Encoder (cap press)  11 
15 67 Encoder (cap press)  12 
15 68 Encoder (cap press)  13 
15 69 Encoder (cap press)  14 
15 70 Encoder (cap press)  15 
15 71 Encoder (cap press)  16 
15 72 Encoder (cap press)  17 
15 73 Encoder (cap press)  18 
15 74 Encoder (cap press)  19 
15 75 Encoder (cap press)  20 
15 76 Encoder (cap press)  21 
15 77 Encoder (cap press)  22 
15 78 Encoder (cap press)  23 
15 79 Encoder (cap press)  24 
15 80 Encoder (cap press)  25 
15 81 Encoder (cap press)  26 
15 82 Encoder (cap press)  27 
15 83 Encoder (cap press)  28 
15 84 Encoder (cap press)  29 
15 85 Encoder (cap press)  30 
15 86 Encoder (cap press)  31 
15 87 Encoder (cap press)  32 
15 88 Encoder (cap press)  33 
15 89 Encoder (cap press)  34 
15 90 Encoder (cap press)  35 
15 91 Encoder (cap press)  36 
15 92 Encoder (cap press)  37 
15 93 Encoder (cap press)  38 
15 94 Encoder (cap press)  39 
15 95 Encoder (cap press)  40 
15 96 Encoder (cap press)  41 
15 97 Encoder (cap press)  42 
15 98 Encoder (cap press)  43 
15 99 Encoder (cap press)  44 
15 100 Encoder (cap press)  45 
15 101 Encoder (cap press)  46 
15 102 Encoder (cap press)  47 
15 103 Encoder (cap press)  48 
15 104 Encoder (cap press)  49 
15 105 Encoder (cap press)  50 
15 106 Encoder (cap press)  51 
15 107 Encoder (cap press)  52 
15 108 Encoder (cap press)  53 
15 109 Encoder (cap press)  54 
15 110 Encoder (cap press)  55 

    
15 112 Encoder (spin logic)  1 
15 113 Encoder (spin logic)  b  
15 114 Encoder (spin logic)  2 
15 115 Encoder (spin logic)  b  
15 116 Encoder (spin logic)  3 
15 117 Encoder (spin logic)  b  
15 118 Encoder (spin logic)  4 
15 119 Encoder (spin logic)  b  
15 120 Encoder (spin logic)  5 
15 121 Encoder (spin logic)  b  
15 122 Encoder (spin logic)  6 
15 123 Encoder (spin logic)  b  
15 124 Encoder (spin logic)  7 
15 125 Encoder (spin logic)  b  
15 126 Encoder (spin logic)  8 
15 127 Encoder (spin logic)  b  



7 List of registers and ranges 
 
Each register of the instruments has a specific name and range. As reference, here follows a 
list of the registers, their ranges, and, if applicable, amount of transposition in semitones of 
the sounding pipes relative to 8 foot. This list is also provided separately from the manual, in 
pdf, csv and excel formats, as well as visual representations of the (transposed) ranges. 
 
# name type organ section lowest highest transposition 

1 Dulciana 8 Sauer D3 36 91 0 
2 Bourdon 8 Sauer D4 36 91 0 
3 Flute harmonique 8 Sauer D3 36 91 0 
4 Gamba 8 Sauer D3 36 91 0 
5 Principal 8 Sauer D4 36 91 0 
6 Rohrflote 4 Sauer D4 36 91 12 
7 Octave 4 Sauer D3 36 91 12 
8 Bourdon 16 Sauer D3 36 91 -12 
9 Rausch-quinte 2 2/3, 2 Sauer D4 36 91  

10 Cornett-mixtur 3-5 fach Sauer D4 36 91  
11 Trompete 8 Sauer D3 36 91 0 
12 Schwell-gedeckt 16 Sauer D1 36 65 -12 
13 Subbass 16 Sauer D1 36 65 -12 
14 Contra-bass 16 Sauer D2 36 65 -12 
15 Cello 8 Sauer D1 36 65 0 
16 Bassflote 8 Sauer D1 36 65 0 
17 Octav-bass 8 Sauer D1 36 65 0 
18 Contra-bass 32 Sauer D2 36 65 -24 
19 Posaune 16 Sauer D2 36 65 -12 
20 Posaune 32 Sauer D2 36 65 -24 
21 Motor ab  Sauer D3    
22 Quintaton 8 Sauer D5 36 103 0 
23 Konzert-flote 8 Sauer D5 36 103 0 
24 Voix celeste 8 Sauer D5 48 103 0 
25 Violine 4 Sauer D5 36 103 12 
26 Travers-flote 4 Sauer D5 36 103 12 
27 Flautino 2 Sauer D5 36 91 24 
28 Harmonia aetheria 3 fach Sauer D5 36 91  
29 Tremulant  Sauer D5    
30 Aeoline 8 Sauer D6 36 103 0 
31 Fugara 8 Sauer D6 36 103 0 
32 Floten-principal 8 Sauer D6 36 103 0 
33 Lieblich Gedeckt 16 Sauer D6 36 103 -12 
34 Oboe 8 Sauer D6 36 103 0 
35 Clarinette 8 Sauer D6 36 103 0 



Interface Manual / 7 List of registers and ranges 
 

 36 

36 Burdun 16 Utopa HW 36 92 -12 
37 Principal 8 Utopa HW 36 92 0 
38 Rohrflott 8 Utopa HW 36 92 0 
39 Quintathen 8 Utopa HW 36 92 0 
40 Octav 4 Utopa HW 36 92 12 
41 Gemshorn 4 Utopa HW 36 92 12 
42 Weit Pfeiffe 2 Utopa HW 36 92 24 
43 Sexquint altra 2 fach Utopa HW 36 92  
44 Mixtur 5 fach Utopa HW 36 92  
45 Cymbel 3 fach Utopa HW 36 92  
46 Cornett 4 fach Utopa HW 59 92  
47 Fagott 16 Utopa HW 36 92 -12 
48 Trompet 8 Utopa HW 36 92 0 
49 Gedackt 8 Utopa OW 36 92 0 
50 Violdi-gamba 8 Utopa OW 36 92 0 
51 Unda maris 8 Utopa OW 56 92 0 
52 Principal 4 Utopa OW 36 92 12 
53 Rohrflott 4 Utopa OW 36 92 12 
54 Nassat 3 Utopa OW 36 92 19 
55 Octav 2 Utopa OW 36 92 24 
56 Waldflott 2 Utopa OW 36 92 24 
57 Tertia 1 3/5 Utopa OW 36 90 28 
58 Quinta 1 1/2 Utopa OW 36 92 31 
59 Sufflott 1 Utopa OW 36 92 36 
60 Sharf 4 fach Utopa OW 36 92  
61 Vox humana 8 Utopa OW 36 92 0 
62 Principal 16 Utopa P 36 66 -12 
63 Subbass 16 Utopa P 36 66 -12 
64 Quint Bass 12 Utopa P 36 66 -5 
65 Octav 8 Utopa P 36 66 0 
66 Posaune 16 Utopa P 36 66 -12 
67 Posaune 8 Utopa P 36 66 0 
68 Clarin 4 Utopa P 36 66 12 

 


